Loss Functions

نویسنده

  • Robert C. Williamson
چکیده

Vapnik described the “three main learning problems” of pattern recognition, regression estimation and density estimation. These are defined in terms of the loss functions used to evaluate performance (0-1 loss, squared loss and log loss respectively). But there are many other loss functions one could use. In this chapter I will summarise some recent work by myself and colleagues studying the theoretical aspects of loss functions. The results elucidate the richness of the set of loss functions and explain some of the implications of their choice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Estimation of Shift Point in Shape Parameter of Inverse Gaussian Distribution Under Different Loss Functions

In this paper, a Bayesian approach is proposed for shift point detection in an inverse Gaussian distribution. In this study, the mean parameter of inverse Gaussian distribution is assumed to be constant and shift points in shape parameter is considered. First the posterior distribution of shape parameter is obtained. Then the Bayes estimators are derived under a class of priors and using variou...

متن کامل

A simple approach to multiple attribute decision making using loss functions

Multiple attribute decision making (MADM) methods are very much essential in all fields of engineering, management and other areas where limited alternatives exist and the decision maker has to select the best alternative. Different methods are available in the literature to tackle the MADM problems. The MADM problems are classified as scoring methods, compromising methods and concordance metho...

متن کامل

Minimax Estimation of the Scale Parameter in a Family of Transformed Chi-Square Distributions under Asymmetric Squared Log Error and MLINEX Loss Functions

This paper is concerned with the problem of finding the minimax estimators of the scale parameter ? in a family of transformed chi-square distributions, under asymmetric squared log error (SLE) and modified linear exponential (MLINEX) loss functions, using the Lehmann Theorem [2]. Also we show that the results of Podder et al. [4] for Pareto distribution are a special case of our results for th...

متن کامل

Determining an Economically Optimal (N,C) Design via Using Loss Functions

In this paper, we introduce a new sampling plan based on the defective proportion of batch. The proposed sampling plan is based on the distribution function of the proportion defective. A continuous loss function is used to quantify deviations between the proportion defective and its acceptance quality level (AQL).  For practical purpose, a sensitivity analysis is carried out on the different v...

متن کامل

A Quartic Quality Loss Function and Its Properties

We propose a quartic function to represent a family of continuous quality loss functions. Depending on the choice of its parameters the shape of this function within the specification limits can be either symmetric or asymmetric, and it can be either similar to the ubiquitous quadratic loss function or somewhat closer to the conventional step function. We examine this family of loss functions i...

متن کامل

Estimation for the Type-II Extreme Value Distribution Based on Progressive Type-II Censoring

In this paper, we discuss the statistical inference on the unknown parameters and reliability function of type-II extreme value (EVII) distribution when the observed data are progressively type-II censored. By applying EM algorithm, we obtain maximum likelihood estimates (MLEs). We also suggest approximate maximum likelihood estimators (AMLEs), which have explicit expressions. We provide Bayes ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013